\(\int \frac {\sqrt {f+g x} \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt {d+e x}} \, dx\) [735]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 48, antiderivative size = 241 \[ \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {\left (\frac {a e}{c d}-\frac {f}{g}\right ) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 \sqrt {d+e x}}+\frac {(f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{4 c^{3/2} d^{3/2} g^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

-1/4*(-a*e*g+c*d*f)^2*arctanh(g^(1/2)*(c*d*x+a*e)^(1/2)/c^(1/2)/d^(1/2)/(g*x+f)^(1/2))*(c*d*x+a*e)^(1/2)*(e*x+
d)^(1/2)/c^(3/2)/d^(3/2)/g^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(g*x+f)^(3/2)*(a*d*e+(a*e^2+c*d^2
)*x+c*d*e*x^2)^(1/2)/g/(e*x+d)^(1/2)+1/4*(a*e/c/d-f/g)*(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(
e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {878, 884, 905, 65, 223, 212} \[ \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=-\frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g)^2 \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{4 c^{3/2} d^{3/2} g^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {(f+g x)^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x}}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (\frac {a e}{c d}-\frac {f}{g}\right )}{4 \sqrt {d+e x}} \]

[In]

Int[(Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/Sqrt[d + e*x],x]

[Out]

(((a*e)/(c*d) - f/g)*Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*Sqrt[d + e*x]) + ((f + g*x)
^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(2*g*Sqrt[d + e*x]) - ((c*d*f - a*e*g)^2*Sqrt[a*e + c*d*x]
*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(4*c^(3/2)*d^(3/2)*g^(3/2
)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 878

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Dist[m*((c*e*f + c*d*g - b*e
*g)/(e^2*g*(m - n - 1))), Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b,
c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Intege
rQ[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0] &&  !(IntegerQ[n + p] && LtQ[n + p +
2, 0]) && RationalQ[n]

Rule 884

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Dist[n*((c*e*f + c*d
*g - b*e*g)/(c*e*(m - n - 1))), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b,
c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Int
egerQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rule 905

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Dist[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*
(f + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2
 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g) \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{4 g} \\ & = \frac {\left (\frac {a e}{c d}-\frac {f}{g}\right ) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 \sqrt {d+e x}}+\frac {(f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g)^2 \int \frac {\sqrt {d+e x}}{\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 c d g} \\ & = \frac {\left (\frac {a e}{c d}-\frac {f}{g}\right ) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 \sqrt {d+e x}}+\frac {(f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {\left ((c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \int \frac {1}{\sqrt {a e+c d x} \sqrt {f+g x}} \, dx}{8 c d g \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ & = \frac {\left (\frac {a e}{c d}-\frac {f}{g}\right ) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 \sqrt {d+e x}}+\frac {(f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {\left ((c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {f-\frac {a e g}{c d}+\frac {g x^2}{c d}}} \, dx,x,\sqrt {a e+c d x}\right )}{4 c^2 d^2 g \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ & = \frac {\left (\frac {a e}{c d}-\frac {f}{g}\right ) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 \sqrt {d+e x}}+\frac {(f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {\left ((c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \text {Subst}\left (\int \frac {1}{1-\frac {g x^2}{c d}} \, dx,x,\frac {\sqrt {a e+c d x}}{\sqrt {f+g x}}\right )}{4 c^2 d^2 g \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ & = \frac {\left (\frac {a e}{c d}-\frac {f}{g}\right ) \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 \sqrt {d+e x}}+\frac {(f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g)^2 \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{4 c^{3/2} d^{3/2} g^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.67 \[ \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {c} \sqrt {d} \sqrt {g} \sqrt {a e+c d x} \sqrt {f+g x} (a e g+c d (f+2 g x))-(c d f-a e g)^2 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {f+g x}}{\sqrt {g} \sqrt {a e+c d x}}\right )\right )}{4 c^{3/2} d^{3/2} g^{3/2} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/Sqrt[d + e*x],x]

[Out]

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[c]*Sqrt[d]*Sqrt[g]*Sqrt[a*e + c*d*x]*Sqrt[f + g*x]*(a*e*g + c*d*(f + 2*
g*x)) - (c*d*f - a*e*g)^2*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])/(Sqrt[g]*Sqrt[a*e + c*d*x])]))/(4*c^(3/2)*d^
(3/2)*g^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 319, normalized size of antiderivative = 1.32

method result size
default \(-\frac {\sqrt {g x +f}\, \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (\ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a^{2} e^{2} g^{2}-2 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a c d e f g +\ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) c^{2} d^{2} f^{2}-4 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {c d g}\, c d g x -2 \sqrt {c d g}\, \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, a e g -2 \sqrt {c d g}\, \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, c d f \right )}{8 \sqrt {e x +d}\, \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, c d g \sqrt {c d g}}\) \(319\)

[In]

int((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8*(g*x+f)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)*(ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c
*d*g)^(1/2))/(c*d*g)^(1/2))*a^2*e^2*g^2-2*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^
(1/2))/(c*d*g)^(1/2))*a*c*d*e*f*g+ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2))/(
c*d*g)^(1/2))*c^2*d^2*f^2-4*((g*x+f)*(c*d*x+a*e))^(1/2)*(c*d*g)^(1/2)*c*d*g*x-2*(c*d*g)^(1/2)*((g*x+f)*(c*d*x+
a*e))^(1/2)*a*e*g-2*(c*d*g)^(1/2)*((g*x+f)*(c*d*x+a*e))^(1/2)*c*d*f)/(e*x+d)^(1/2)/((g*x+f)*(c*d*x+a*e))^(1/2)
/c/d/g/(c*d*g)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 1.29 (sec) , antiderivative size = 657, normalized size of antiderivative = 2.73 \[ \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\left [\frac {4 \, {\left (2 \, c^{2} d^{2} g^{2} x + c^{2} d^{2} f g + a c d e g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} + {\left (c^{2} d^{3} f^{2} - 2 \, a c d^{2} e f g + a^{2} d e^{2} g^{2} + {\left (c^{2} d^{2} e f^{2} - 2 \, a c d e^{2} f g + a^{2} e^{3} g^{2}\right )} x\right )} \sqrt {c d g} \log \left (-\frac {8 \, c^{2} d^{2} e g^{2} x^{3} + c^{2} d^{3} f^{2} + 6 \, a c d^{2} e f g + a^{2} d e^{2} g^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d g x + c d f + a e g\right )} \sqrt {c d g} \sqrt {e x + d} \sqrt {g x + f} + 8 \, {\left (c^{2} d^{2} e f g + {\left (c^{2} d^{3} + a c d e^{2}\right )} g^{2}\right )} x^{2} + {\left (c^{2} d^{2} e f^{2} + 2 \, {\left (4 \, c^{2} d^{3} + 3 \, a c d e^{2}\right )} f g + {\left (8 \, a c d^{2} e + a^{2} e^{3}\right )} g^{2}\right )} x}{e x + d}\right )}{16 \, {\left (c^{2} d^{2} e g^{2} x + c^{2} d^{3} g^{2}\right )}}, \frac {2 \, {\left (2 \, c^{2} d^{2} g^{2} x + c^{2} d^{2} f g + a c d e g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} \sqrt {g x + f} + {\left (c^{2} d^{3} f^{2} - 2 \, a c d^{2} e f g + a^{2} d e^{2} g^{2} + {\left (c^{2} d^{2} e f^{2} - 2 \, a c d e^{2} f g + a^{2} e^{3} g^{2}\right )} x\right )} \sqrt {-c d g} \arctan \left (\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d g} \sqrt {e x + d} \sqrt {g x + f}}{2 \, c d e g x^{2} + c d^{2} f + a d e g + {\left (c d e f + {\left (2 \, c d^{2} + a e^{2}\right )} g\right )} x}\right )}{8 \, {\left (c^{2} d^{2} e g^{2} x + c^{2} d^{3} g^{2}\right )}}\right ] \]

[In]

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(4*(2*c^2*d^2*g^2*x + c^2*d^2*f*g + a*c*d*e*g^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x +
d)*sqrt(g*x + f) + (c^2*d^3*f^2 - 2*a*c*d^2*e*f*g + a^2*d*e^2*g^2 + (c^2*d^2*e*f^2 - 2*a*c*d*e^2*f*g + a^2*e^3
*g^2)*x)*sqrt(c*d*g)*log(-(8*c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g + a^2*d*e^2*g^2 - 4*sqrt(c*d*e*
x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*g*x + c*d*f + a*e*g)*sqrt(c*d*g)*sqrt(e*x + d)*sqrt(g*x + f) + 8*(c^2*
d^2*e*f*g + (c^2*d^3 + a*c*d*e^2)*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*a*c*d*e^2)*f*g + (8*a*c*d^2*e +
 a^2*e^3)*g^2)*x)/(e*x + d)))/(c^2*d^2*e*g^2*x + c^2*d^3*g^2), 1/8*(2*(2*c^2*d^2*g^2*x + c^2*d^2*f*g + a*c*d*e
*g^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f) + (c^2*d^3*f^2 - 2*a*c*d^2*e*f*g
 + a^2*d*e^2*g^2 + (c^2*d^2*e*f^2 - 2*a*c*d*e^2*f*g + a^2*e^3*g^2)*x)*sqrt(-c*d*g)*arctan(2*sqrt(c*d*e*x^2 + a
*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*g)*sqrt(e*x + d)*sqrt(g*x + f)/(2*c*d*e*g*x^2 + c*d^2*f + a*d*e*g + (c*d*e
*f + (2*c*d^2 + a*e^2)*g)*x)))/(c^2*d^2*e*g^2*x + c^2*d^3*g^2)]

Sympy [F]

\[ \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \sqrt {f + g x}}{\sqrt {d + e x}}\, dx \]

[In]

integrate((g*x+f)**(1/2)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(1/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))*sqrt(f + g*x)/sqrt(d + e*x), x)

Maxima [F]

\[ \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {g x + f}}{\sqrt {e x + d}} \,d x } \]

[In]

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(g*x + f)/sqrt(e*x + d), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 995 vs. \(2 (201) = 402\).

Time = 0.65 (sec) , antiderivative size = 995, normalized size of antiderivative = 4.13 \[ \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\frac {{\left (\frac {\frac {4 \, {\left (\frac {{\left (c d e^{2} f g - a e^{3} g^{2}\right )} \log \left ({\left | -\sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} \sqrt {c d g} + \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \right |}\right )}{\sqrt {c d g}} + \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g}\right )} e f {\left | g \right |}}{g^{2}} - \frac {4 \, {\left (\frac {{\left (c d e^{2} f g - a e^{3} g^{2}\right )} \log \left ({\left | -\sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} \sqrt {c d g} + \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \right |}\right )}{\sqrt {c d g}} + \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g}\right )} d {\left | g \right |}}{g} + \frac {{\left (\sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} {\left (2 \, e^{2} f + 2 \, {\left (e x + d\right )} e g - 2 \, d e g - \frac {5 \, c^{2} d^{2} e^{2} f - 4 \, c^{2} d^{3} e g - a c d e^{3} g}{c^{2} d^{2}}\right )} \sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} - \frac {{\left (3 \, c^{2} d^{2} e^{4} f^{2} g - 4 \, c^{2} d^{3} e^{3} f g^{2} - 2 \, a c d e^{5} f g^{2} + 4 \, a c d^{2} e^{4} g^{3} - a^{2} e^{6} g^{3}\right )} \log \left ({\left | -\sqrt {e^{2} f + {\left (e x + d\right )} e g - d e g} \sqrt {c d g} + \sqrt {-c d e^{2} f g + a e^{3} g^{2} + {\left (e^{2} f + {\left (e x + d\right )} e g - d e g\right )} c d g} \right |}\right )}{\sqrt {c d g} c d}\right )} {\left | g \right |}}{e g^{2}}}{g} - \frac {c^{2} d^{2} e^{3} f^{2} g {\left | g \right |} \log \left ({\left | -\sqrt {e^{2} f - d e g} \sqrt {c d g} + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \right |}\right ) - 2 \, a c d e^{4} f g^{2} {\left | g \right |} \log \left ({\left | -\sqrt {e^{2} f - d e g} \sqrt {c d g} + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \right |}\right ) + a^{2} e^{5} g^{3} {\left | g \right |} \log \left ({\left | -\sqrt {e^{2} f - d e g} \sqrt {c d g} + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \right |}\right ) + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \sqrt {e^{2} f - d e g} \sqrt {c d g} c d e f {\left | g \right |} - 2 \, \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \sqrt {e^{2} f - d e g} \sqrt {c d g} c d^{2} g {\left | g \right |} + \sqrt {-c d^{2} e g^{2} + a e^{3} g^{2}} \sqrt {e^{2} f - d e g} \sqrt {c d g} a e^{2} g {\left | g \right |}}{\sqrt {c d g} c d g^{3}}\right )} {\left | e \right |}^{2}}{4 \, e^{5}} \]

[In]

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

1/4*((4*((c*d*e^2*f*g - a*e^3*g^2)*log(abs(-sqrt(e^2*f + (e*x + d)*e*g - d*e*g)*sqrt(c*d*g) + sqrt(-c*d*e^2*f*
g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g)))/sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f
+ (e*x + d)*e*g - d*e*g)*c*d*g)*sqrt(e^2*f + (e*x + d)*e*g - d*e*g))*e*f*abs(g)/g^2 - 4*((c*d*e^2*f*g - a*e^3*
g^2)*log(abs(-sqrt(e^2*f + (e*x + d)*e*g - d*e*g)*sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x
+ d)*e*g - d*e*g)*c*d*g)))/sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g
)*sqrt(e^2*f + (e*x + d)*e*g - d*e*g))*d*abs(g)/g + (sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g -
d*e*g)*c*d*g)*(2*e^2*f + 2*(e*x + d)*e*g - 2*d*e*g - (5*c^2*d^2*e^2*f - 4*c^2*d^3*e*g - a*c*d*e^3*g)/(c^2*d^2)
)*sqrt(e^2*f + (e*x + d)*e*g - d*e*g) - (3*c^2*d^2*e^4*f^2*g - 4*c^2*d^3*e^3*f*g^2 - 2*a*c*d*e^5*f*g^2 + 4*a*c
*d^2*e^4*g^3 - a^2*e^6*g^3)*log(abs(-sqrt(e^2*f + (e*x + d)*e*g - d*e*g)*sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e
^3*g^2 + (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g)))/(sqrt(c*d*g)*c*d))*abs(g)/(e*g^2))/g - (c^2*d^2*e^3*f^2*g*ab
s(g)*log(abs(-sqrt(e^2*f - d*e*g)*sqrt(c*d*g) + sqrt(-c*d^2*e*g^2 + a*e^3*g^2))) - 2*a*c*d*e^4*f*g^2*abs(g)*lo
g(abs(-sqrt(e^2*f - d*e*g)*sqrt(c*d*g) + sqrt(-c*d^2*e*g^2 + a*e^3*g^2))) + a^2*e^5*g^3*abs(g)*log(abs(-sqrt(e
^2*f - d*e*g)*sqrt(c*d*g) + sqrt(-c*d^2*e*g^2 + a*e^3*g^2))) + sqrt(-c*d^2*e*g^2 + a*e^3*g^2)*sqrt(e^2*f - d*e
*g)*sqrt(c*d*g)*c*d*e*f*abs(g) - 2*sqrt(-c*d^2*e*g^2 + a*e^3*g^2)*sqrt(e^2*f - d*e*g)*sqrt(c*d*g)*c*d^2*g*abs(
g) + sqrt(-c*d^2*e*g^2 + a*e^3*g^2)*sqrt(e^2*f - d*e*g)*sqrt(c*d*g)*a*e^2*g*abs(g))/(sqrt(c*d*g)*c*d*g^3))*abs
(e)^2/e^5

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx=\int \frac {\sqrt {f+g\,x}\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\sqrt {d+e\,x}} \,d x \]

[In]

int(((f + g*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x)^(1/2),x)

[Out]

int(((f + g*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x)^(1/2), x)